Product Code Database
Example Keywords: pajamas -grand $78
   » » Wiki: Nilpotent Matrix
Tag Wiki 'Nilpotent Matrix'.
Tag

In , a nilpotent matrix is a N such that

N^k = 0\,
for some positive k. The smallest such k is called the index of N, sometimes the degree of N.

More generally, a nilpotent transformation is a linear transformation L of a such that L^k = 0 for some positive integer k (and thus, L^j = 0 for all j \geq k). Both of these concepts are special cases of a more general concept of that applies to elements of rings.


Examples

Example 1
The matrix
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} is nilpotent with index 2, since A^2 = 0.


Example 2
More generally, any n-dimensional triangular matrix with zeros along the is nilpotent, with index \le n . For example, the matrix
B=\begin{bmatrix} 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix} is nilpotent, with

B^2=\begin{bmatrix} 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}
\

B^3=\begin{bmatrix} 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}

\

B^4=\begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}

The index of B is therefore 4.


Example 3
Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,
C=\begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix} \qquad C^2=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} although the matrix has no zero entries.


Example 4
Additionally, any matrices of the form

\begin{bmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1-a_2-\ldots-a_{n-1} & -a_1-a_2-\ldots-a_{n-1} & \ldots & -a_1-a_2-\ldots-a_{n-1} \end{bmatrix}

such as

\begin{bmatrix} 5 & 5 & 5 \\ 6 & 6 & 6 \\ -11 & -11 & -11 \end{bmatrix}

or

\begin{bmatrix}
1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ -7 & -7 & -7 & -7 \end{bmatrix}

square to zero.


Example 5
Perhaps some of the most striking examples of nilpotent matrices are n\times n square matrices of the form:

\begin{bmatrix}
2 & 2 & 2 & \cdots & 1-n \\ n+2 & 1 & 1 & \cdots & -n \\ 1 & n+2 & 1 & \cdots & -n \\ 1 & 1 & n+2 & \cdots & -n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}

The first few of which are:

\begin{bmatrix}
2 & -1 \\ 4 & -2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & -2 \\ 5 & 1 & -3 \\ 1 & 5 & -3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & -3 \\ 6 & 1 & 1 & -4 \\ 1 & 6 & 1 & -4 \\ 1 & 1 & 6 & -4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & 2 & -4 \\ 7 & 1 & 1 & 1 & -5 \\ 1 & 7 & 1 & 1 & -5 \\ 1 & 1 & 7 & 1 & -5 \\ 1 & 1 & 1 & 7 & -5 \end{bmatrix} \qquad \ldots

These matrices are nilpotent but there are no zero entries in any powers of them less than the index.


Example 6
Consider the linear space of of a bounded degree. The operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.


Characterization
For an n \times n square matrix N with (or ) entries, the following are equivalent:
  • N is nilpotent.
  • The characteristic polynomial for N is \det \left(xI - N\right) = x^n.
  • The minimal polynomial for N is x^k for some positive integer k \leq n.
  • The only complex eigenvalue for N is 0.
The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)

This theorem has several consequences, including:

  • The index of an n \times n nilpotent matrix is always less than or equal to n. For example, every 2 \times 2 nilpotent matrix squares to zero.
  • The and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible.
  • The only nilpotent diagonalizable matrix is the zero matrix.

See also: Jordan–Chevalley decomposition#Nilpotency criterion.


Classification
Consider the n \times n (upper) :
S = \begin{bmatrix}
  0 & 1 & 0 & \ldots & 0  \\
  0 & 0 & 1 & \ldots & 0  \\
  \vdots & \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & 0 & \ldots & 1  \\
  0 & 0 & 0 & \ldots & 0
     
\end{bmatrix}. This matrix has 1s along the and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:
S(x_1,x_2,\ldots,x_n) = (x_2,\ldots,x_n,0).
This matrix is nilpotent with degree n, and is the nilpotent matrix.

Specifically, if N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form

\begin{bmatrix}
  S_1 & 0 & \ldots & 0 \\
  0 & S_2 & \ldots & 0 \\
  \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \ldots & S_r
     
\end{bmatrix} where each of the blocks S_1,S_2,\ldots,S_r is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.

For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix

\begin{bmatrix}
  0 & 1 \\
  0 & 0
     
\end{bmatrix}. That is, if N is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1b2 such that N b 1 = 0 and Nb2 =  b1.

This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)


Flag of subspaces
A nilpotent transformation L on \mathbb{R}^n naturally determines a flag of subspaces
\{0\} \subset \ker L \subset \ker L^2 \subset \ldots \subset \ker L^{q-1} \subset \ker L^q = \mathbb{R}^n
and a signature
0 = n_0 < n_1 < n_2 < \ldots < n_{q-1} < n_q = n,\qquad n_i = \dim \ker L^i.

The signature characterizes L an invertible linear transformation. Furthermore, it satisfies the inequalities

n_{j+1} - n_j \leq n_j - n_{j-1}, \qquad \mbox{for all } j = 1,\ldots,q-1.
Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.


Additional properties

Generalizations
A T is locally nilpotent if for every vector v, there exists a k\in\mathbb{N} such that
T^k(v) = 0.\!\,
For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.


Notes


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs